EXAMPLE A The contour map in Figure 1 shows the snowfall, in inches, that fell on the state of Colorado on December 24, 1982. (The state is in the shape of a rectangle that measures 388 mi west to east and 276 mi south to north.) Use the contour map to estimate the average snowfall for Colorado as a whole on December 24. The average value of a function f of two variables defined on a rectangle R is

$$
f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)$ is the area of R.

FIGURE I

SOLUTION Let's place the origin at the southwest corner of the state. Then $0 \leqslant x \leqslant 388,0 \leqslant y \leqslant 276$, and $f(x, y)$ is the snowfall, in inches, at a location x miles to the east and y miles to the north of the origin. If R is the rectangle that represents Colorado, then the average snowfall for the state on December 24 was

$$
f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)=388 \cdot 276$. To estimate the value of this double integral let's use the Midpoint Rule with $m=n=4$. In other words, we divide R into 16 subrectangles of equal size, as in Figure 2. The area of each subrectangle is

$$
\Delta A=\frac{1}{16}(388)(276)=6693 \mathrm{mi}^{2}
$$

FIGURE 2

Using the contour map to estimate the value of f at the center of each subrectangle, we get

$$
\begin{aligned}
\iint_{R} f(x, y) d A \approx & \sum_{i=1}^{4} \sum_{j=1}^{4} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A \\
\approx & \Delta A[0.4+1.2+1.8+3.9+0+3.9+4.0+6.5 \\
& \quad+0.1+6.1+16.5+8.8+1.8+8.0+16.2+9.4] \\
= & (6693)(88.6)
\end{aligned}
$$

Therefore

$$
f_{\mathrm{ave}} \approx \frac{(6693)(88.6)}{(388)(276)} \approx 5.5
$$

On December 24, 1982, Colorado received an average of approximately $5 \frac{1}{2}$ inches of snow.

